Intersection Types with Subtyping by Means of Cut Elimination

نویسنده

  • Olivier Laurent
چکیده

We give a purely syntactic proof (from scratch) of the subject equality property of the BCD intersection type system through a reformulation of the subtyping relation having a “cutelimination” property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logic of subtyping

We introduce new modal logical calculi that describe subtyping properties of Cartesian product and disjoint union type constructors as well as mutually-recursive types defined using those type constructors. Basic Logic of Subtyping S extends classical propositional logic by two new binary modalities ⊗ and ⊕. An interpretation of S is a function that maps standard connectives into set-theoretica...

متن کامل

Strongly Normalising Cut-Elimination with Strict Intersection Types

This paper defines reduction on derivations in the strict intersection type assignment system of [2], by generalising cut-elimination, and shows a strong normalisation result for this reduction. Using this result, new proofs are given for the approximation theorem and the characterisation of normalisability using intersection types.

متن کامل

Cut-elimination in the Strict Intersection Type Assignment System Is Strongly Normalising

This paper defines reduction on derivations in the strict intersection type assignment system of [1], by generalising cut-elimination, and shows a strong normalisation result for this reduction. Using this result, new proofs are given for the approximation theorem and the characterisation of normalisability using intersection types.

متن کامل

Cut-Elimination in the Strict Intersection Type Assignment System is Strongly Normalizing

“ This paper defines reduction on derivations (cut-elimination) in the Strict Intersection Type Assignment System of [1] and shows a strong normalisation result for this reduction. Using this result, new proofs are given for the approximation theorem and the characterisation of normalisability of terms, using intersection types. ”

متن کامل

Decidability of Higher-Order Subtyping with Intersection Types

The combination of higher-order subtyping with intersection types yields a typed model of object-oriented programming with multiple inheritance 11]. The target calculus, F ! ^ , a natural generalization of Girard's system F ! with intersection types and bounded polymorphism, is of independent interest, and is our subject of study. Our main contribution is the proof that subtyping in F ! ^ is de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundam. Inform.

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2012